SITEMAP * HOME PAGE * Basic Science Quizzes for students age ~13-14
Biology * Chemistry * Physics age ~14-16 * Advanced pre-university Chemistry age ~16-18
School chemistry notes: Formulations - definition & examples explained
Scroll down, take time to study the content or follow links or [Use the website search box]
Doc Brown's Chemistry Notes on Formulation Chemistry What is formulation Chemistry? What are formulations? (Suitable for AQA, Edexcel and OCR GCSE chemistry students) Examples of Formulation Products Alphabetical list of formulations mentioned adhesives * antiperspirants * cosmetics * deodorants * detergents * dietary supplements hair colouring * herbicides * inks * nail polish * paints * perfumes * pesticides petrol * petroleum oil products * pharmaceutical products * sunscreens/sunblockers Well, examples of the products of formulation chemistry are adhesives, antiperspirants, cosmetics, deodorants, detergents, sunscreens (sunblockers), paints, dietary supplements, hair colourings, herbicides, inks, nail polish, paints, perfumes, pesticides, fuels like petrol or diesel, pharmaceutical products e.g. medicines like headache tablets, alloys, fertilisers and alloys. Formulation chemistry is the mixing of substances of specific amounts that do not react with each other but produce a mixture (the FORMULATION) with the desired characteristics/properties to suit a particular application/use. Many modern products contain a combination of several chemical substances, each contributing an advantage to the finished product for a particular application.
Most products list the ingredients with any warning signs or advice on the use of the formulation on its packaging. Laws are getting stricter, so beware of any product that does not clearly state what is in the formulation!
Because a formulation is a mixture that has been specially designed as a useful product for a particular purpose, many such products are complex mixtures in which each chemical has a particular purpose.
Any developed product must be commercially viable i.e. a useful profitable material, so, almost every example quoted below, you will actually find in your home i.e. a broad range of useful household products are the result of the science of formulation chemistry. Since no reactions happen in making the mixture, most formulations are prepared by measuring liquids by volume and solids by mass ('weight').
Although there are no chemical reactions involved in preparing formulations, there are many chemical aspects to do with formulation.
By changing the composition of the mixture, its properties will change to be more or less suited to a particular useful application.
Formulations and GCSE level: You would be expected to appreciate that a formulation is a mixture that has been designed as a useful product, often a complex mixtures in which each chemical has a particular purpose.
A paint is made up of a base pigment, a mixture of compounds to give the paint a particular colour. A binder and a solvent to dissolve some of the components to give a well mixed composition and to give the paint the right sort of viscosity ('stickiness'). The solvent eventually evaporates to give a hard solid surface finish (matt or gloss depending on the composition). There may be other additives to give paints and the finish other distinctive properties. Binders (resins) bind the pigment to the surface painted and pigments must be insoluble materials e.g. titanium dioxide and zinc oxide are used as white pigments (and have replaced potentially harmful lead pigments). Sometimes the binding action involves a chemical change e.g. polymerisation. Acrylic paints use polymer resins as a solvent and can be thinned with water, but still dry easily and the resin sets hard. Paints may be water, latex, oil, acrylic or epoxy based. House paints must be reasonably durable at a reasonable price but high durability paints used for car and aircraft bodies are more costly. Thermochromic paint - changes colour when heated i.e. the colour observed is depends on the temperature. Photochromic paint - changes colour on exposure to light i.e. observed colour depends on light intensity.
Inks and Dyes There is a huge variety of inks available of different compositions to suit different circumstances. Ink used for newspapers or paperback novels must be cheap and have the consistency of a thick sludge to properly feed through the ink rollers of a printing press. Good colour quality is required for glossy magazines. As well as colour composition, appropriate ink flow is important for pens and computer printers. The performance and formulation of a good photocopier or laser printer toner depends upon its electrostatic properties. Dyes, natural or synthetic (dyestuffs) are used to colour fabric materials.
Cosmetics and other 'personal products' The cosmetic industry provides a wide range of formulated products. In the bathroom/bedroom you may find perfumes, moisturizers, rouge, lipstick, anti-aging skin products, face powder, nail polish, sunscreen/sunblocker, hair gel, hair conditioning and colouring products, aftershave and deodorants etc. In the highly competitive world of cosmetics developments in non-allergenic formulations and longer wearability factors have become increasingly important and the way they look and easy application all help to make a product line more marketable. Nail polish consists of flexible lacquers, organic dyes for colouring effects, iron or chromium oxides, and ultramarine blue along with drying agents and binders and solvents such as ethyl ethanoate ( ethyl acetate) that evaporate on drying. Nail polish remover is usually an organic solvent such as propanone (acetone) or ethyl ethanoate. Perfumes have been used for thousands of years and first recorded for posterity by the Egyptians? They and other cultures extracted fragrant substances from plants such as pleasant smelling flowers like roses, geraniums and from lemon oils. Animal extracts like musk were added later. The first perfumes were probably developed to mask the odours from the body or disease - good hygiene is a relatively modern concept! Perfumes are mixtures of various components blended to produce a pleasing scent that will last for several hours. Each fragrant component is called a note. The first note 'impression' is the odour perceived when the scent/perfume is opened or sprayed. The second note is detected after the perfume has made contact with the skin, and the third note is the component to make the fragrance last for a reasonable time. High-quality perfumes are mixtures of 'highly selected' substances that appeal on a personal level. Typical ingredients include extracts of flowers and fragrances such as valerian, lavender, chamomile, passionflower, vanilla, geranium, mint, lemon as well as ambergris or musk, and water or alcohols. The formulation of perfumes is a mixture of 'art' and 'science' and new products are constantly appearing in the 'market place'. As well as products for personal use, perfumes/fragrances are now used in numerous cleaning products and for spraying around the house! Cleopatra would have loved, and been a great patron of the modern cosmetics industry! Hair colouring products are either temporary or permanent. Temporary hair colours attach to the surface of hair and wash out after repeated shampooing. A dye is considered permanent if it penetrates into the hollow hair fibres. Colouring of hair starts with a treatment of substances such as hydrogen peroxide and ammonia. The ammonia causes hair shafts to swell and open, allowing dye intermediates and couplers to penetrate. Dyes applied during the second step of colouring react with the intermediates/couplers to form pigments that remain in the hair. Melanin compounds determine hair colour and the density of melanin granules determines the shade. Hair colours are combinations of organic dyes chosen to produce particular shades. Hair that contains little or no melanin is very light coloured or white. Hair can be deliberately bleached with oxidising agents like hydrogen peroxide which destroys melanin. Deodorants and antiperspirants are often mixed in the same formulation. It should be admitted that deodorants don't usually remove bad body odours, but mask them with a more pleasant smell, but some can inhibit the microorganisms that cause body odour in the first place. Deodorants contain a mixture of strong perfumes e.g. with minty or musky odours. Body odour can be partially reduced by decreasing perspiration, a natural gland function primarily to cool the skin and get rid of excess heat, but perspiration carries pheromones and fatty acids with the resulting odour, as well as the excretion of odourless salt. One active wisely used ingredient of antiperspirants is aluminum chloride and when aluminum ions are absorbed by cells in the epidermis cause the sweat gland ducts to close. Sunscreens/sunblockers/suncreams absorb/block harmful ultraviolet (UV) radiation and allows the skin to tan. UV rays are high energy photons and can cause cancer by damaging DNA and excess UV exposure causes increased wrinkling of the skin. Many of the older 'suncreams' contained organic molecules (usually aromatic compounds) that absorb ultra-violet light (but not necessarily all the UV light) so many products now use reflective-blocking properties of fine zinc oxide (ZnO) and titanium dioxide (TiO2) particles (nanoparticles) because they block a much wider variation of the wavelengths/frequencies of UV light. There are several factors to consider in formulating a particular product e.g. (1) Most aromatic compounds are potentially carcinogenic and/or interfere with hormones so low concentrations are used to minimise risks. (2) The active ingredients should not precipitate out of the solution/cream or the product feel gritty. (3) It is now possible to encapsulate the active ingredients, i.e. the sunblockers, in tiny polymer bags so the active chemicals do not come into contact with the skin. Hair gel - Toothpaste - Shaving foam - Detergents - liquids/gels (e.g. washing up liquids/shampoos) and soaps blocks/powders Detergents are a type of surfactant molecule in that changes the surface tension of the 'washing' solution and act as wetting agents. Enzymes are added to 'biological' washing liquids/powders/detergents. A good acting enzyme is one which efficiently breaks down the organic matter that some stains are made of with zero/minimal damage to the organic matter which the clothes are made of. Washing up liquid detergents are formulated to effectively clean without harming the skin of the person doing dishes. Water is a polar compound that readily dissolves most salts and polar compounds such as sugar but it will not dissolve non-polar fatty/oily substances from the body. Non-polar solvents such as alkane hydrocarbons (hexane etc.) and chlorinated hydrocarbons like 1,1,1-trichloroethane (CH3CCl3), tetrachloromethane (CCl4, carbon tetrachloride) do not really mix with water (immiscible), but will dissolve nonpolar substances such as grease or oil. Shampoo contains a mixture of ingredients, including detergents, that allow water to wet the nonpolar oils found in bodily secretions such as sebum, the oily substances which holds dirt and dead skin in hair. Common detergents include sodium or ammonium lauryl sulfates (lauryl sulphate is an anion - negative ion). Cationic detergents, which act to condition hair as well remove dirt and oil from it, include alkyl ammonium compounds such as stearylammonium chloride or sulphate. Other components of shampoo include surfactants such as polyethylene glycol, antifoaming agents, thickeners, antistatic agents, and buffers (pH balancers) as well as colouring agents and perfumes to make them more attractive to the consumer. Most soaps are sodium or potassium salts of fatty acids that function well as surface active or wetting agents (soaps!) because they are soluble in water but the hydrocarbon chain can interact with grease, oils and other 'fatty' material to dislodge such materials in the washing process. However, calcium and magnesium ions in hard water form insoluble compounds with these fatty acids that dull shower/was basin walls etc. i.e. scum formation! Shampoos/washing up liquids etc. therefore contain chelating agents such as ethylenediaminetetraacetate (EDTA) that form soluble complexes with the magnesium/calcium ions and stopping 'scum' precipitates forming. In addition, a surfactant such as an ethylene glycol ether wets the wall so water droplets run off. Propan-2-ol (2-propanol, isopropyl alcohol) is a solvent both for the shampoo ingredients and helps dissolve substances such as oils that are not water-soluble. Research is being done to utilise bleach substitutes.
Pharmaceutical products - administering drugs and medicines One of the most important aspects of the pharmaceuticals industry relates to drug delivery, i.e. what is the best means of administering a drug?
(i)
Potential side-effects not seen when using an individual drug, but occur with a mixture of assumed beneficial ingredients. Pharmaceutical formulations can be very sophisticated both in design and delivery.
Generally speaking an adhesives is a mixture of a bonding agent and a solvent, which fill surfaces at the microscopic level and harden as the solvent evaporates. Some adhesives, such as super glue - epoxy resins do undergo a chemical reaction as they harden. Silicon based adhesives are used for high temperature applications such as car exhaust repairs.
Fertilisers, Pesticides and Herbicides - agrochemicals
Fertilisers are complex mixtures of chemicals to
provide vital elements for healthy plant growth e.g. NPK fertilisers provide
nitrogen, phosphorus and potassium. For more details see
Ammonia, ammonium salts and fertilisers
Pesticides are chemical agents used to kill pests such as insects and herbicides are used to control plant life such as 'weeds', so by their very nature they are potentially harmful/toxic substance. There may be one of more active ingredients dissolved in a solvent e.g. water and then sprayed on the crops.
Dichlorodiphenyltrichloroethane (DDT) is a halogenated hydrocarbon used during the 1940-1960s to control mosquitoes in Africa and other parts of the world and other pests in the so-called developed world. However, DDT dissolves in fatty tissues of animals and builds up in the food chain. It caused genetic damage in birds which manifested itself by causing thin eggshells that easily break, resulting in the unfortunate death of many chicks. Although DDT is banned in many countries, including the USA, all/most? European countries DDT remains a potent weapon against malarial mosquitoes in other parts of the world. Organophosphate pesticides act by interfering with the nervous system of animals. The lethal dose required depends on the weight of the animal and the effectiveness of the formulation.
Petroleum Oil Products
|
Website content © Dr Phil Brown 2000+. All copyrights reserved on Doc Brown's Chemistry revision notes, images, quizzes, worksheets etc. Copying of website material is NOT permitted. Exam revision summaries & references to science course specifications are unofficial. |
![]() |