UK GCSE level age ~14-16, ~US grades 9-10 Biology revision notes re-edit 23/05/2023 [SEARCH]

Skeleton and muscles: 3. Weight lifted and force needed calculations based on the action of muscles e.g. antagonistic muscles of elbow joint

Doc Brown's Biology exam study revision notes

*

There are various sections to work through, after 1 they can be read and studied in any order.

*

(3) Weight lifted and force calculations based on the action of muscles ALL based on the diagram above for the antagonistic biceps and triceps muscles of the elbow joint

Assume the gravitational field constant is 10 N/kg

Question 1

If d1 = 0.40 m, d2 = 5 cm, using the above diagram for help, and applying the principle of moments, calculate the minimum force needed by the biceps contraction to lift a weight of 20 N.

Question 2

If d1 = 0.36 m, d2 = 0.06 m, using the above diagram for help, and applying the principle of moments, calculate the minimum force needed by the biceps contraction to lift a mass of 3 kg.

Question 3

If d1 = 45 cm, d2 = 5 cm, using the above diagram for help, and applying the principle of moments, calculate the minimum force needed by the biceps contraction to lift a weight of 15 N.

Question 4

If d1 = 48 cm, d2 = 6 cm, using the above diagram for help, and applying the principle of moments, calculate the minimum force needed by the biceps contraction to lift a weight of 2 kg.

Question 5

If d1 = 0.50 m, d2 = 0.05 m, using the above diagram for help, and applying the principle of moments, if the maximum strength of a person's biceps muscle contraction creates a force of 150 N, calculate the maximum weight the person's arm can raise and hold.

Question 6

If d1 = 0.60 m, d2 = 0.06 m, using the above diagram for help, and applying the principle of moments, if the maximum strength of a person's biceps muscle contraction creates a force of 180 N, calculate the maximum mass the person's arm can raise and hold.

Question 7

If d1 = 0.50 m, d2 = 0.05 m, using the above diagram for help, and applying the principle of moments, if the maximum strength of a person's biceps muscle contraction creates a force of 200 N, calculate the maximum weight the person's arm can raise and hold.

Question 8

If d1 = 0.40 m, d2 = 0.06 m, using the above diagram for help, and applying the principle of moments, if the maximum strength of a person's biceps muscle contraction creates a force of 240 N, calculate the maximum mass the person's arm can raise and hold.

WHAT NEXT?

TOP OF PAGE

INDEX of all my BIOLOGY NOTES

This is a BIG website, so try using the [SEARCH BOX], it maybe quicker than the many indexes!

for KS3 science students aged ~11-14, ~US grades 6, 7 and 8

ChemistryPhysics UK GCSE/IGCSE students age ~14-16, ~US grades 9-10

for pre-university ~16-18 ~US grades 11-12, K12 Honors

Website content © Dr Phil Brown 2000+. All copyrights reserved on revision notes, images, quizzes, worksheets etc. Copying of website material is NOT permitted. Exam revision summaries & references to science course specifications are unofficial.

Answers to the muscle force questions using the principle of moments

Remember 1 kg mass is equivalent to 10 N on the Earth's surface.

Q1 F1 x d1 = F2 x d2, convert cm to m, 20 x 0.40 = F2 x 0.05, F2 = 20 x 0.40 / 0.05 = 160 N

Q2 3 kg = 3 x 10 = 30 N, F1 x d1 = F2 x d2, convert cm to m, 30 x 0.36 = F2 x 0.06 x F2, F2 = 30 x 0.36 / 0.06 = 180 N

Q3 F1 x d1 = F2 x d2, convert cm to m, 15 x 0.45 = F2 x 0.05, F2 = 15 x 0.45 / 0.05 = 135 N

Q4 2 kg = 2 x 10 = 20 N, F1 x d1 = F2 x d2, convert cm to m, 20 x 0.48 = F2 x 0.06, F2 = 20 x 0.48 / 0.06 = 160 N

Q5 F1 x d1 = F2 x d2, F1 x 0.50 = 150 x 0.05, F1 = 150 x 0.05 / 0.50 = 15 N

Q6 F1 x d1 = F2 x d2, F1 x 0.60 = 180 x 0.06, F1 = 180 x 0.06 / 0.60 = 18 N, mass = 18 / 10 = 1.8 kg

Q7 F1 x d1 = F2 x d2, F1 x 0.50 = 200 x 0.05, F1 = 200 x 0.05 / 0.50 = 20 N

Q8 F1 x d1 = F2 x d2, F1 x 0.40 = 240 x 0.06, F1 = 240 x 0.06 / 0.40 = 36 N, mass = 36 /10 = 3.6 kg

 @import url(https://www.google.co.uk/cse/api/branding.css); ENTER specific biology words or courses e.g. topic, module, exam board, structure, concept, animal or plant feature, 'phrase', homework question! anything of biological interest! This is a very comprehensive Google generated search of my website.

TOP OF PAGE